Isospin

Cameron Poe

January 30, 2026

Introduction

I decided to write a note due to not being able to follow a derivation in class, and also strug-
gling with finding correct information in textbooks. I don’t think this is “huge” or honestly that
remarkable, but it confused me for a few days, mainly because quite a few sources are contra-
dictory. The issue comes from needing to distinguish carefully between fields and single-particle
states. I'll give a brief motivation of the issue.

Consider the following interaction Lagrangian:

L = gzva 7N (1)

where N is the proton/neutron double N = (p n), o; are the Pauli matrices, and 7’ are a set
of real scalar fields. This is a first-pass model of pion-nucleon interactions, but doesn’t work
due to pions being parity odd as well as the chiral Lagrangian requiring derivative couplings
of the pion field. Still, it works for illustrative purposes. Notice that this is invariant under a
global SU(2) transformation (that we’ll prove in the next section).

The 7 do not create or annihilate particles of definite isospin (specifically, third component,
of isospin). So, in my class, and also in Schwartz section 22.3, new operators are defined
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that create and annihilate particles of I3 = +1 and I3 = —1, respectively. 7 = 73 too. As
we’ll see later, this sort-of makes sense when we consider:
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The issue with this definition becomes evident when we multiply out the interaction term
(neglecting the prefactors):
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Focusing on the third term, we see it corresponds to an interaction vertex where a neutron
and a 7~ enter the diagram and a proton exits. This manifestly violates isospin conservation,
since the initial state has I3 = —3/2 and the proton has I3 = +1/2. We haven’t included a
coupling to the photon, but 7% has charge 1, and this would also violate charge conservation.

n} = 70pp — 7000 + V21 pn 4+ V2rtap (4)



Massless Spinors

Global SU(2) Invariant Couplings

Before proceeding to resolving the isospin conservation problem, it’s useful just to write out
how the interaction is invariant under global SU(2). To do so, let’s generalize the interaction.
Let v, represent some multiplet of particles, and let the free Lagrangian be invariant under
transformations

(x) = P+ i€ (to), " m(x) (5)

The t, are the generators of transformations of some Lie group in some representation that
the 1; is in. Next, define ¢” to be in the adjoint representation, so that the respective free
Lagrangian is invariant under

¢7(z) = ¢7(2) + €'Co 56" () (6)
where the C” 5 are the real structure constants of the Lie algebra
[ta,ts] = iC7 51, (7)

The reality condition on C’Vaﬁ is actually somewhat restrictive, but it guarantees that the
generators are Hermitian.
The adjoint of the 1 field transforms like (and dropping the position labels)

@O = @) =i @™ (ta)m (8)

where we used the Hermiticity of the generators (t,);™* = (ta),,
Let’s see how the following object transforms to first order in € (and also dropping position
dependence for brevity):
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So, effectively what’s going on is a simultaneous transformation of the 1 multiplet and its

adjoint is the same as transforming the generators coupling the two multiplets.
Next, let’s see how the following quantity transforms
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So this quantity is a scalar under global transformations. In particular,
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is invariant under global SU(2) transformations.

One can generalize this depending on what the components of v, are. For instance, if each
1y is itself a Dirac spinor, one can imagine coupling the spinor indices via gamma matrices, but
this will not affect the structure of the coupling between the multiplet components.




Massless Spinors

The Fields Transform Contravariantly

The title says the resolution to the earlier isopsin conservation issue. I'll try to elaborate this.
When we consider a multiplet in the adjoint representation, we are considering a vector 7,
where
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where I've defined a basis
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which I'll call the adjoint basis. This name is due to the fact that the adjoint representation
of a Lie algebra is unique in that it induces a natural basis since the relation (ta)ﬁ7 = —@'Cﬁm
gives the components of the generator.

Next, we want to define our single-particle pion states as eigenstates of isospin, specifically
of I? and I3, where I3 is given by
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The eigenvectors with eigenvalue +1,0, —1 are given by
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These eigenvectors are a perfectly good basis, so let’s express our adjoint basis in terms of
this new basis. One can check that the correct relation is
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Our expression for the 7 vector in the new basis is then

o) = = (7' (@) — ir*(x)) &4 + 7(x)&0 + L (7' () + in*(x)) &- (17)

V2 V2

which makes it natural to identify the pion fields in this new basis as

nt = \}5 (7r1 F z'7r2) , m=r (18)

What happened here? Well, our pion fields formed the coefficients of a vector, and our pion
isospin states are a basis of this vector space. If we want to change the basis to a new basis, the
basis will of course transform covariantly, while the coefficients transform contravariantly such
that the overall vector is invariant. So, the fields don’t transform like the states under
a change of basis.
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A Sanity Check

It makes sense that we associate, for instance, the field 77 (x) with the positive isospin pion,
but are we sure that 71 (z) annihilates a positive isospin pion and creates its antiparticle?
We can perform a brief sanity check. Consider a single-pion state. The full state vector is
a tensor product between a vector in the isospin space and a vector that transforms in an
irreducible representation of the Lorentz group. The pion has spin 0, so the full state vector
has a momentum label as well as a label for the isospin space. Let’s say our single-pion is in a
definite state in the adjoint basis. We can rewrite such a state as a creation operator acting on
the vacuum:

p,7") = |p) @& = al(p, ") |0) (19)
and similarly
b, %) = Ip) @ & — a(p,7%)[0) (20)

Now, following the previous section, define the following linear combinations
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These states have momentum p and are definite eigenstates of I3 with isospin +1, respec-
tively. We can factor out the creation and annihilation operators to rewrite this as

p.7) = = (b ) il (p.78) ) (22)

which lets us identify
1 .
al(p,7%) = 7 (a'(p,7") £ ial(p, 7)) . (23)

The corresponding annihilation operator would then be
alp, ) = —= (a(p, ™) F ia(p, 7)) (24)
V2
Working in the interaction picture, we want the field that annihilates 7% and creates its

antiparticle to be proportional to a(p,n*). It’s clear that we then need to take the linear
combination of fields
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This a) confirms what we found in the last section, and b) confirms that the 7* are each
other’s antiparticles.




