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1 Conventions

We will follow all the same conventions as Weinberg does. Most importantly, a generic four
vector is written as Aµ = (A1, A2, A3, A0), and the metric ηµν = diag(1, 1, 1, −1).

2 Chapter 2
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WEINBERG SOLUTIONS2.1 Problem 2.1 – Quantum Lorentz Transformations for a Massive Particle

2.1 Problem 2.1 – Quantum Lorentz Transformations for a Massive Particle

We will make use of equation (2.5.23) for how a massive particle state Ψp,σ transforms under a
homogenous Lorentz transformation U(Λ):

U(Λ)Ψp,σ =
√

(Λp)0

p0

∑
σ′

D
(j)
σ′σ(W (Λ, p))ΨΛp,σ′ (1)

The most difficult part of this problem is finding what the little group transformation W
is. W is given by equation (2.5.10):

W (Λ, p) = L−1(Λp)ΛL(p) (2)

Before we compute W , we can note two properties it must have. Since the little group for
massive particles is SO(3), we know that W , a representation of the little group, must be a
rotation matrix. The other property is the rotation matrix must be a rotation about the x-
axis. This is because p is in the y-direction, and therefore the boost L(p) preserves four-vectors’
x-components. Similarly, the boost Λ is in the z-direction and preserves x-components. The
boost L−1(Λp) boosts in the y- and z-directions, and must also preserve x-components. So the
rotation W must leave x-components invariant, which means the rotation must be about the
x-axis.

The energy of the W-boson in observer O’s frame is E =
√

p2 + m2, and therefore the
four-momentum is

pµ = (0, p, 0, E) (3)
We will use equation (2.5.24) to calculate L(p) and L−1(Λp). The Lorentz factor to go

from kµ to pµ is γ = E
m

, so
√

γ2 − 1 = p
m

. The components of the unit three-momentum are
p̂1 = p̂3 = 0 and p̂2 = 1. The boost L(p) is then

L(p) =


1 0 0 0
0 E

m
0 p

m

0 0 1 0
0 p

m
0 E

m

 (4)

Since O′ is moving at speed v in the +z-direction relative to O, the boost that takes us
from O to O′ is

Λ =


1 0 0 0
0 1 0 0
0 0 γ −vγ
0 0 −vγ γ

 (5)

where γ = 1√
1−v2 . Note that this γ is not referring to the gamma used to previously find L(p),

but rather refers to the boost from O to O′.
The four-momenta to O′ is

(Λp)µ = (0, p, −vγE, γE) (6)

The boost L−1(Λp) is the inverse of L(Λp), and therefore boosts a particle with four-
momentum (Λp)µ back into its rest frame. This is equivalent to boosting the particle in the
opposite direction it was originally boosted in, so L−1(Λp) = L(−Λp). The Lorentz factor for
this boost is γ = E′

m
= γE

m
. The expression for Li

0 can be simplified when solving for these
components:

Li
0(p) = p̂i

√
γ2 − 1 = pi

|p|
|p|
m

= pi
m

(7)
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WEINBERG SOLUTIONS2.1 Problem 2.1 – Quantum Lorentz Transformations for a Massive Particle

Therefore

L1
0(−Λp) = 0 (8)

L2
0(−Λp) = − p

m
(9)

L3
0(−Λp) = vγE

m
(10)

The boost L−1(Λp) then reads

L−1(Λp) =



1 0 0 0

0 γE
m

(
p2+v2γmE
p2+v2γ2E2

)
vγpE
m

(
m−γE

p2+v2γ2E2

)
− p
m

0 vγpE
m

(
m−γE

p2+v2γ2E2

)
v2γ3E3+mp2

m(p2+v2γ2E2)
vγE
m

0 − p
m

vγE
m

γE
m


(11)

Plugging all of this into Equation 2 gives the full little group element

W (Λ, p) =



1 0 0 0

0 γm+E
m+γE

vγp
m+γE 0

0 − vγp
m+γE

γm+E
m+γE 0

0 0 0 1


(12)

We should note that W (Λ, p) has the predicted form of a rotation matrix about the x-axis,
where we identify cos(θ) = γm+e

m+γE and sin(θ) = vγp
m+γE .

Since the W-boson is a spin-1 particle, the representation D
(j=1)
σ′σ of W (Λ, p) is simply a

rotation matrix for 3D vectors, so we can immediately identify

D
(1)
σ′σ =


1 0 0

0 γm+E
m+γE

vγp
m+γE

0 − vγp
m+γE

γm+E
m+γE

 (13)

with subsequent rows and columns numbered -1, 0, and 1.
We are now able to write the full transformed state

U(Λ)Ψp,+1 =
√

γE

E

∑
σ′

D
(1)
σ′,+1(W (Λ, p))ΨΛp,σ′

= √
γ
(
D

(1)
−1,+1ΨΛp,−1 + D

(1)
0,+1ΨΛp,0 + D

(1)
+1,+1ΨΛp,+1

)
= √

γ

(
vγp

m + γE
ΨΛp,0 + γm + E

m + γE
ΨΛp,+1

)

U(Λ)Ψp,+1 =
√

γ

m + γE
(vγpΨΛp,0 + (γm + E)ΨΛp,+1)

(14)

We can further check that when v → 0, we get that U(Λ)Ψp,+1 = Ψp,+1, as expected.

3



WEINBERG SOLUTIONS2.2 Problem 2.2 – Quantum Lorentz Transformations for a Massless Particle

2.2 Problem 2.2 – Quantum Lorentz Transformations for a Massless Particle

To solve this problem, we do something similar to 2.1, where we find the little group element
W , and read off the necessary values from this matrix to find U(Λ).

The quantum Lorentz transformation for a massless particle is given by equation (2.5.42)
in Weinberg:

U(Λ)Ψp,σ =
√

(Λp)0

p0 eiσθ(Λ,p)ΨΛp,σ (15)

Weinberg equation 2.5.43 gives the relation between W , W as a Wigner rotation, and the
special form of W for massless particles:

W (Λ, p) = L−1(Λp)ΛL(p) = S(α(Λ, p), β(Λ, p))R(θ(Λ, p)) (16)

where we have the following relations:

S(α, β) =


1 0 −α α
0 1 −β β
α β 1 − ξ ξ
α β −ξ 1 + ξ

 (17)

R(θ) =


cos θ sin θ 0 0

− sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 (18)

L(p) = R(p̂)B(|p|/κ) (19)

B(u) =



1 0 0 0
0 1 0 0
0 0 u2+1

2u
u2−1

2u

0 0 u2−1
2u

u2+1
2u

 (20)

where L(p) is boosting kµ = (0, 0, κ, κ) to pµ, R(p̂) rotates the three-axis to the direction of
the three-momentum p̂. Also, ξ = 1

2(α2 + β2).
The four-momentum of the photon to observer O is pµ = (0, p, 0, p). We boost to observer

O′ moving in the +z-direction with velocity β = v. The four-momentum to O′ is then

Λp =


1 0 0 0
0 1 0 0
0 0 γ −vγ
0 0 −vγ γ



0
p
0
p

 =


0
p

−vγp
γp

 (21)

with γ = 1/
√

1 − v2.
For L(p), we wish to rotate k, the standard massless three-momentum which is along the

three-axis, into the p̂ direction. This is the +y-direction in our case. This is a rotation of −π/2
about the one-axis. Weinberg describes other rotation conventions that would give the same
result (and also change the phase of one-particle states), but we will go with this as it only
requires one rotation.1 The rotation matrix then looks like:

R(p̂) = R1(−π/2) =


1 0 0 0
0 0 − sin(−π/2) 0
0 sin(−π/2) 0 0
0 0 0 1

 =


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 (22)

1See Hagimoto for the other convention.
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WEINBERG SOLUTIONS2.2 Problem 2.2 – Quantum Lorentz Transformations for a Massless Particle

The full L(p) is then

L(p) =



1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1





1 0 0 0
0 1 0 0
0 0 (p/κ)2+1

2(p/κ)
(p/κ)2−1

2(p/κ)

0 0 (p/κ)2−1
2(p/κ)

(p/κ)2+1
2(p/κ)

 =



1 0 0 0
0 0 (p/κ)2+1

2(p/κ)
(p/κ)2−1

2(p/κ)

0 −1 0 0
0 0 (p/κ)2−1

2(p/κ)
(p/κ)2+1

2(p/κ)

 (23)

To find L−1(Λp), first let p′ = Λp. We then note

L−1(p′) = (R(p̂′)B(|p′|/κ))−1 = B−1(|p′|/κ)R−1(p̂′) (24)

Solving for R(p̂′), we can once again do a simple rotation about the one-axis, although
this time it won’t be a nice angle like π/2. Since this is a massless particle, we must have
|p′| = E = γp, so −p̂′ = (0, −1/γ, v). Geometrically, we find that cos θ = −v and sin θ = −1/γ.
Our inverse rotation matrix then just sends cos θ → cos θ and sin θ → − sin θ

R−1(p̂′) =


1 0 0 0
0 −v −1/γ 0
0 1/γ −v 0
0 0 0 1

 (25)

The inverse of B(u) is not as simply as letting u → −u everywhere, but since the (3, 0) and
(0, 3) elements correspond to βγ, we just put a minus on these since we are boosting in the
opposite direction, i.e. in −β, so

B−1(|p′|/κ) =


1 0 0 0
0 1 0 0
0 0 (γp/κ)2+1

2(γp/κ) − (γp/κ)2−1
2(γp/κ)

0 0 − (γp/κ)2−1
2(γp/κ)

(γp/κ)2+1
2(γp/κ)

 (26)

Our full L(p′) is:

L−1(p′) =



1 0 0 0
0 −v −1/γ 0
0 p

2κ + κ
2pγ2 −vκ2+p2γ2

2pγκ −pγ
2κ + κ

2pγ

0 − p
2κ + κ

2pγ2 −pvγ
2κ − vκ

2pγ
pγ
2κ + κ

2pγ

 (27)

The full little group element is then

W =



1 0 0 0
0 1 −vκ

p
vκ
p

0 vκ
p

1 − v2κ2

2p2
v2κ2

2p2

0 vκ
p

−v2κ2

2p2 1 + v2κ2

2p2

 (28)
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WEINBERG SOLUTIONS 2.3 Problem 2.3 – Galilean Group Commutation Relations

Let’s now match this W to the one in terms of θ, α, and β.

W =


1 0 −α α
0 1 −β β
α β 1 − ξ ξ
α β −ξ 1 + ξ




cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 (29)

=


cos θ sin θ −α α

− sin θ cos θ −β β
α cos θ − β sin θ β cos θ + α sin θ 1 − ξ ξ
α cos θ − β sin θ β cos θ + α sin θ −ξ 1 + ξ

 (30)

The top left 2-by-2 block let’s us easily read off what θ is, while the top right 2-by-2 block
let’s us read α and β. We see that θ = 0, α = 0, and β = vκ/p. Therefore, the transformed
photon state is

U(Λ)Ψp,+1 = √
γΨΛp,+1 (31)

2.3 Problem 2.3 – Galilean Group Commutation Relations

To begin, we define our inhomogeneous Galilean transformations as a pair (G, a), where G is a
4x4 matrix acting on 4-vectors, and a is a 4-vector shift representing the translation elements.
The group law is the same as the Poincare case: (Ḡ, ā)(G, a) = (ḠG, Ḡa + ā). The analogues
to the Lorentz condition here are two-fold; both the spatial norm of vectors on the same time
slice, and the time coordinate of any vector must be preserved under arbitrary (homogeneous)
Galilean transformations G. These conditions have the form∑

i

(Gx)i(Gy)i =
∑
i

xiyi and (Gx)0 = x0 . (32)

In component notation, these have the form

GikGjk = δij and G0α = δ0α . (33)

From here on, we will use latin indices to refer to spatial components (1,2,3) and greek indices
for arbitrary components. We will also write the sums implicitly unless the notation is wack.

These conditions tell us that the spatial block of the matrix G must be an ordinary 3x3
rotation matrix R, and that the bottom row of the matrix is null save for the time component.
The boost components (Gi0) are unconstrained, so we set them as the vector v. In block-
diagonal notation, G then takes the form:

G =
[
R v
0 1

]
. (34)

We will be interested in the form of the infinitesimal transformations, eg when we approxi-
mately have G = 1+ω (or Gαβ = δαβ +ωαβ), where ω is a matrix representing the infinitesimal
parameters. Concretely,

G =
[
1 0
0 1

]
+
[
r b
0 0

]
= 1 + ω (35)

where r is our infinitesimal rotation, and b our infinitesimal boost.
Applying the Galilean conditions to this infinitesimal form, we obtain

δij = GikGjk = (δik + ωik)(δjk + ωjk) = δij + ωij + ωji + O(ω2)
⇒ ωij = −ωji

(36)
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WEINBERG SOLUTIONS 2.3 Problem 2.3 – Galilean Group Commutation Relations

δ0α = G0α = δ0α + ω0α + O(ω2) ⇒ ω0α = 0 . (37)
This just confirms what we already knew, namely that the infinitesimal matrix r is antisym-
metric, and the bottom row of the infinitesimal matrix ω is 0.

As with the relativistic case, there are 10 independent generators: 3 for rotations, 3 for
boosts, and 4 for spacetime translations. When we represent these group elements on the
Hilbert space as U(G, a), we can then expand the infinitesimal elements as:

U(1 + ω, ε) = 1 + i

2rijJij + ibiKi − iεiPi − iε0P0 . (38)

The factor of 1/2 again comes from the fact that since r is antisymmetric, we can also choose
the generators Jij in our representation to be antisymmetric, so the double sum over i, j doubles
the contribution from each independent parameter.

Following the procedure in Section 2.4, we can expand the product U(G, a)U(1+ω, ε)U−1(G, a)
in two different ways; one where we first apply the group law, and one where we first expand.
However, there is a key difference to the Galilean case from the Lorentz case. The representa-
tion of the Galilean group acting on the Hilbert space is intrinsically projective, and moreover,
the central charges cannot be eliminated by a redefinition of the commutators (see Section 2.7).
This means that the group law in the representation will have the form:

U(Ḡ, ā)U(G, a) = exp
[
iφ(Ḡ, ā; G, a)

]
U(ḠG, Ḡa + ā) . (39)

However, the discussion in Section 2.7 shows that this extra phase is equivalent to the inclusion
of central charges in the commutation relations, so we will ignore the phase for now, and
manually add in the central charges once we have the basic commutators.

We need to expand both sides of the equation:

U(G, a)U(1 + ω, ε)U−1(G, a) = U(1 + GωG−1, Gε − GωG−1a) . (40)

Expanding the RHS is made much easier through use of the block diagonal matrices for G, ω
written above. We have:

1 + i

2(RrRT )mnJmn + i(Rb − RrRTv)mKm

− i
[
(R(ε + a0b) + RrRT (a0v − a) − ε0v)mPm + ε0P0

]
.

(41)

And for the left side, we have:

U(G, a)
[
1 + i

2rijJij + ibiKi − iεiPi − iε0P0
]
U−1(G, a) . (42)

Expanding out the RHS making sure the indices on the infinitesimal parameters are the same
as those on the LHS, we can match the coefficients of those parameters on either side to arrive
at the transformation laws for each of the generators:

U(G, a)JijU−1(G, a) = RmiRnj

(
Jmn − 2Kmvn − 2Pm(a0vn − an)

)
U(G, a)KiU

−1(G, a) = Rmi(Km − a0Pm)
U(G, a)PiU−1(G, a) = RmiPm

U(G, a)P0U
−1(G, a) = P0 + vmPm .

(43)

Now, treating G, a as infinitesimal transformations of the Galilean group, we can expand the
U ’s to first order, eg for the transformation of Pi we get:

(δmi + rmi)Pm =
(
1 + i

2rmnJmn + ibmKm − iεmPm − iε0P0
)
Pi
(
1 − i

2rmnJmn − ibmKm + iεmPm + iε0P0
)

(44)
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WEINBERG SOLUTIONS 2.3 Problem 2.3 – Galilean Group Commutation Relations

which, when cancelling out the Pi terms, leads to

rmnδniPm = i

2rmn[Jmn, Pi] + ibm[Km, Pi] − iεm[Pm, Pi] − iε0[P0, Pi] . (45)

Equating terms with common infinitesimal coefficients (and remembering rmn, Jmn are anti-
symmetric), we get for the commutators:

i[Jmn, Pi] = δniPm − δmiPn , [Km, Pi] = [Pm, Pi] = [P0, Pi] = 0 . (46)

With the convention J12 ≡ J3, etc, we can do the same with the other transformation laws to
get all of the commutators:

[Ji, Jj] = iεijkJk, [Ji, Kj] = iεijkKk, [Ki, Kj] = 0
[Ji, Pj] = iεijkPk, [Ki, Pj] = 0, [Ki, P0] = −iPi

[P0, Ji] = [P0, Pi] = [Pi, Pj] = 0 .

(47)

Note that these do not yet match the commutation relations that Weinberg writes on Pg.
62 for the Galilean group. This is because, as discussed before, the work we have done so far
has assumed that the Galilean group has an ordinary representation on the Hilbert space, and
not a projective one. This does not mean the work we have done is completely invalidated,
but it does mean that we have to add to the commutation relations a central charge term
proportional to the identity, so that the commutators in general go from:

[tb, tc] = iCa
bcta ⇒ [tb, tc] = iCa

bcta + iCbc1. (48)

Thus, we rewrite our commutators above as:

[Ji, Jj] = iεijkJk + iAij, [Ji, Kj] = iεijkKk + iBij, [Ki, Kj] = iDij

[Ji, Pj] = iεijkPk + iEij, [Ki, Pj] = iFij, [Ki, P0] = −iPi + iLi0

[P0, Ji] = iN0i, [P0, Pi] = iQ0i, [Pi, Pj] = iRij .

(49)

To determine these constants Cbc in more detail, we need to apply the Jacobi identity to each
of our commutators, which in general takes the form:[

ta, [tb, tc]
]

+
[
tc, [ta, tb]

]
+
[
tb, [tc, ta]

]
= 0 . (50)

As an example of how this works, consider now the Jacobi identity applied to P0, Ki, Pj:

0 =
[
P0, [Ki, Pj]

]
+
[
Pj, [P0, Ki]

]
+
[
Ki, [Pj, P0]

]
= [Pj, iPi − iLi0] = −i[Pi, Pj] = Rij

⇒ Rij = 0 .

(51)

In the first line, the inner commutators of the first and third terms give only central charges
(constants), so the outer commutators vanish. In the second line, we used that the commutator
of the two Pi generators gives another charge term, which we could then set to 0 because of
the Jacobi identity. We now need to repeat this process for the other commutators. We have
a few other similar cases:

P0, Ji, Jj:

0 =
[
P0, [Ji, Jj]

]
+
[
Jj, [P0, Ji]

]
+
[
Ji, [Jj, P0]

]
= iεijk[P0, Jk] = −εijkN0k

⇒ N0i = 0 .

(52)
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WEINBERG SOLUTIONS 2.3 Problem 2.3 – Galilean Group Commutation Relations

P0, Ji, Pj:

0 =
[
P0, [Ji, Pj]

]
+
[
Pj, [P0, Ji]

]
+
[
Ji, [Pj, P0]

]
= iεijk[P0, Pk] = −εijkQ0k

⇒ Q0i = 0 .

(53)

Ji, Kj, Kk:

0 =
[
Ji, [Kj, Kk]

]
+
[
Kk, [Ji, Kj]

]
+
[
Kj, [Kk, Ji]

]
= iεijm[Kk, Km] − iεikm[Kj, Km]
= −εijmDkm + εikmDjm

(54)

This is the first non-trivial one. First note that from (49), Dij is antisymmetric by definition,
so all diagonal elements vanish. Next, pluging into the above every possibility of i = j 6= k
yields Dij = 0 for i 6= j. These combined mean Dij = 0 uniformly.

Now we look at the central charges where the "base" commutation relations make use of
the Levi-Civita symbol for their structure constants. Specifically, Aij, Bij, Eij. Note how Aij

is antisymmetric by definition, but Bij, Eij must be shown to be so. For Eij, we consider the
Jacobi identity for P0, Ji, Kj:

0 =
[
P0, [Ji, Kj]

]
+
[
Kj, [P0, Ji]

]
+
[
Ji, [Kj, P0]

]
= iεijk[P0, Kk] − i[Ji, Pj]
= −εijkPk + εijkLi0 + εijkPk + Eij

= −εijkPk + Eij .

(55)

Similarly, we can swap the indices on Ji and Kj to get the result 0 = −εjikPk+Eji = εijkPk+Eji.
Adding this and the last line of (55) yields Eij + Eji = 0, so Eij is antisymmetric. To show the
same for Bij, we look at the Jacobi identity for Ji, Jj, Kk:

0 =
[
Ji, [Jj, Kk]

]
+
[
Kk, [Ji, Jj]

]
+
[
Jj, [Kk, Ji]

]
= iεjkm[Ji, Km] − iεijm[Jm, Kk] − iεikm[Jj, Km]
= −εjkmεimnKn + εijmεmknKn + εikmεjmnKn

− εjkmBim + εijmBmk + εikmBjm .

(56)

The first line of the last equality vanishes from properties of εijk (also since the generators Kn

are linearly independent to each other and to the identity on the lie algebra vector space, their
coefficients must identically vanish if the RHS is equal to 0). The second line, when you plug in
all cases of i = k 6= j, yields the desired antisymmetry condition, Bij +Bji = 0 (alternatively, if
you’re feeling particularly pretentious or feel so inclined as to sacrifice a whole sheet of paper to
the algebra gods, you can do some tedious index gymnastics by contracting with various Levi-
Civita tensors and Kronecker deltas to arrive at the same thing, but this method is objectively
dumb and stupid).

Now that we know Aij, Bij, Eij are all antisymmetric, we can move to redefine the corre-
sponding generators to eliminate the central charges. Because these charges are antisymmetric,
we can write them in terms of the antisymmetric Levi-Civita tensor, eg:

Aij = εijkak, Bij = εijkbk, Eij = εijkek , (57)

for some sets of undetermined constants ak, bk, ek. We then redefine the generators in the
following way:

J̃i ≡ Ji + ai, K̃i ≡ Ki + bi, P̃i ≡ Pi + ei . (58)
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WEINBERG SOLUTIONS 2.3 Problem 2.3 – Galilean Group Commutation Relations

With these redefined generators, the commutation relations are rid of the A, B, E charges, eg:
[J̃i, J̃j] = [Ji, Jj] = iεijkJk + iAij = iεijk(J̃k − ak) + iεijkak = iεijkJ̃k . (59)

The same holds with the other commutation relations. From here on, we will work with the J̃
generators, but refer to them without tildes as J .

We can summarize our results so far by writing the commutation relations:
[Ji, Jj] = iεijkJk, [Ji, Kj] = iεijkKk, [Ki, Kj] = 0
[Ji, Pj] = iεijkPk, [Ki, Pj] = iFij, [Ki, P0] = −iPi + iLi0

[P0, Ji] = [P0, Pi] = [Pi, Pj] = 0 .

(60)

We still have two charges to deal with, Li0 and Fij. We can show that Li0 = 0 with the Jacobi
identity applied to P0, Ji, Kj:

0 =
[
P0, [Ji, Kj]

]
+
[
Kj, [P0, Ji]

]
+
[
Ji, [Kj, P0]

]
= iεijk[P0, Kk] − i[Ji, Pj]
= −εijkPk + εijkLk0 + εijkPk = εijkLk0

⇒ Li0 = 0 .

(61)

Now we consider the final charge, Fij. First we consider the Jacobi identity applied to
Ji, Pj, Kk:

0 =
[
Ji, [Pj, Kk]

]
+
[
Kk, [Ji, Pj]

]
+
[
Pj, [Kk, Ji]

]
= iεijm[Kk, Pm] − iεikm[Pj, Km]
= −εijmFkm − εikmFmj .

(62)

As before, we can plug in all cases of i = k 6= j to kill the second term and get that Fij = 0 for
all i 6= j, meaning all off-diagonal elements are 0. We can then plug in the cases where ijk is
some permutation of even permutation of 123, which leads to the condition F11 = F22 = F33,
which when combined with the former condition means that Fij is proportional to the identity.
In other words, we may choose

Fij = −Mδij . (63)
Because this central charge does not take the form of the structure constants contracted with
some set of scalars (equation 2.7.10 of Weinberg), it follows that we cannot eliminate it by
redefinition of the generators. This is not explicitly stated by Weinberg, but can be shown by
assuming a redefinition of the generators ta → t̃a eliminates the central charges, and solving
for the condition on the redefinition parameters.

To make contact with the Galilean group commutation relations presented by the late and
great Steve, we make one final redefinition, namely

H ≡ P0 + M , (64)
where our P0 is playing the role of W in the text. This doesn’t change the commutation
relations because M is proportional to the identity, and therefore commutes with everything.
Once we formally enlarge our group by adding in this mass generator M , our final commutation
relations become:

[Ji, Jj] = iεijkJk, [Ji, Kj] = iεijkKk, [Ki, Kj] = 0
[Ji, Pj] = iεijkPk, [Ki, Pj] = −iMδij, [Ki, P0] = −iPi

[P0, Ji] = [P0, Pi] = [Pi, Pj] = 0
[M, t] = 0 for all generators t in the Lie algebra.

(65)

Note: Actually identifying M with the mass of the particles in the theory is another story,
and beyond the scope of these solutions.
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WEINBERG SOLUTIONS 2.4 Problem 2.4 – Casimir Elements of O(3,1)

2.4 Problem 2.4 – Casimir Elements of O(3,1)

This problem is relatively straightforward, asking us to prove that P µPµ and W µWµ, the
Casimir elements of O(3, 1), do indeed commute with all the generators of the algebra. One
could solve this directly by calculating the commutators with P µ and Jρσ, but this is quite
involved. An easier way is to show that these Casimir elements transform as scalars under
inhomogeneous Lorentz transformation, i.e. [P µPµ, U(Λ, a)] = [W µWµ, U(Λ, a)] = 0, which
implies for infinitiessimal parameters that these elements commute with all the generators.
This is particularly easy for P µPµ since it transforms as a four-vector under inhomogeneous
Lorentz transformations, Weinberg 2.4.9:

U(Λ, a)P µU−1(Λ, a) = Λ µ
ν P ν (66)

We therefore have

U(Λ, a)P µPµU−1(Λ, a) = U(Λ, a)P µU−1(Λ, a)U(Λ, a)PµU−1(Λ, a)
= Λ µ

ν P νΛρµP ρ

= (Λ−1)µνΛρ
µP νPρ

= δρνP νPρ

= P ρPρ

=⇒ U(Λ, a)P µPµ = P µPµU(Λ, a)
=⇒ [P µPµ, U(Λ, a), ] = 0

(67)

W is a little harder to work with. We first begin with seeing how W µ transforms under
inhomogeneous Lorentz transformations. A useful reminder is how Jρσ transforms:

U(Λ, a)JρσU−1(Λ, a) = Λ ρ
µ Λ σ

ν (Jµν − aµP ν + aνP µ) (68)

Applying this to W µ:

U(Λ, a)W µU−1(Λ, a) = ηµνεναβγU(Λ, a)JαβP γU−1(Λ, a)
= ηµνεναβγU(Λ, a)JαβU−1(Λ, a)U(Λ, a)P γU−1(Λ, a)
= ηµνεναβγΛ α

ρ Λ β
σ Λ γ

τ (Jρσ − aρP σ + aσP ρ) P τ

(69)

Focusing on the second and third terms,

− ηµνεναβγΛ α
ρ Λ β

σ Λ γ
τ aρP σ + ηµνεναβγΛ α

ρ Λ β
σ Λ γ

τ aσP ρP τ

= ηµν
(
−εναβγ(Λ−1a)α(Λ−1P )β(Λ−1P )γ + εναβγ(Λ−1a)β(Λ−1P )α(Λ−1P )γ

)
= ηµν

(
−εναβγ(Λ−1a)α(Λ−1P )β(Λ−1P )γ + ενβγα(Λ−1a)β(Λ−1P )γ(Λ−1P )α

)
= 0

(70)

where to arrive at the third line we did two permutations of the Levi-Cevita symbol εναβγ =
ενβγα and swapped (Λ−1P )α and (Λ−1P )γ since they commute. We are left with

U(Λ, a)W µU−1(Λ, a) = ηµνεναβγΛ α
ρ Λ β

σ Λ γ
τ JρσP τ (71)

Before we proceed, we will need to recall some identities of the Levi-Cevita symbol. In four
dimensions, we have the following identity:

εµαβγε
µδεζ = δδεζαβγ (72)
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WEINBERG SOLUTIONS 2.5 Problem 2.5 – Massive Particles in 2+1 Dimensions

where the δ on the right is the generalized Kronecker delta. The definition of this symbol is

δδεζαβγ =
∑
p∈P

sgn(p)δδαδεβδζγ (73)

where P is the set of all possible permutations of either the top or bottom row. Therefore,

εµαβγε
µδεζ = δδαδεβδζγ + δζαδδβδεγ + δεαδζβδδγ − δδαδζβδεγ − δεαδδβδζγ − δζαδεβδδγ (74)

We now have

U(Λ, a)W µWµU−1(Λ, a) = U(Λ, a)W µU−1(Λ, a)U(Λ, a)WµU−1(Λ, a)
= εµαβγεµδεζΛ α

ρ Λ β
σ Λ γ

τ Λ δ
φ Λ ε

χ Λ ζ
ψ JρσP τJφχPψ

= εµαβγεµδεζΛ α
ρ Λ β

σ Λ γ
τ Λφ

δΛχ
εΛ

ψ
ζJ

ρσP τJφχPψ

(75)

Focusing just on the Levi-Cevita and Λ portion

εµαβγεµδεζΛ α
ρ Λ β

σ Λ γ
τ Λφ

δΛχ
εΛ

ψ
ζ

= (δδαδεβδζγ + δζαδδβδεγ + δεαδζβδδγ − δδαδζβδεγ − δεαδδβδζγ

− δζαδεβδδγ )Λ α
ρ Λ β

σ Λ γ
τ Λφ

δΛχ
εΛ

ψ
ζ

= Λ δ
ρ Λ ε

σ Λ ζ
τ Λφ

δΛχ
εΛ

ψ
ζ + Λ ζ

ρ Λ δ
σ Λ ε

τ Λφ
δΛχ

εΛ
ψ
ζ + Λ ε

ρ Λ ζ
σ Λ δ

τ Λφ
δΛχ

εΛ
ψ
ζ

− Λ δ
ρ Λ ζ

σ Λ ε
τ Λφ

δΛχ
εΛ

ψ
ζ − Λ ε

ρ Λ δ
σ Λ ζ

τ Λφ
δΛχ

εΛ
ψ
ζ − Λ ζ

ρ Λ ε
σ Λ δ

τ Λφ
δΛχ

εΛ
ψ
ζ

= δφρδ
χ
σδψτ + δψρδ

φ
σδχτ + δχρδ

ψ
σδφτ − δφρδ

ψ
σδχτ − δχρδ

φ
σδψτ − δψρδ

χ
σδφτ

= εµφχψεµρστ

(76)

Therefore

U(Λ, a)W µWµU−1(Λ, a) = εµφχψεµρστJ
ρσP τJφχPψ = W µWµ

=⇒ U(Λ, a)W µWµ = W µWµU(Λ, a)
=⇒ [W µWµ, U(Λ, a)] = 0

(77)

So, since both P µPµ and W µWµ commute with an arbitrary U(Λ, a), these operators must
also commute with all generators of inhomogeneous Lorentz transformations, and are therefore
Casimir elements.

2.5 Problem 2.5 – Massive Particles in 2+1 Dimensions

2.6 Problem 2.6 – Massless Particles in 2+1 Dimensions

We will proceed in a very similar fashion to Weinberg. Even though we are now in 2+1
dimensions, we will still use greek letters to label the three-vector components. We introduce
the unit time-like and unit light-like vectors.

kµ = (0, 1, 1), tµ = (0, 0, 1) (78)

We introduce the little group elements W that is defined as the group of elements of O(3,1)
that leave the light-like vector invariant, (Wk)µ = kµ. We have the following identities:

tµtµ = −1 =⇒ tµtµ = (Wt)µ(Wt)µ = −1
tµkµ = −1 =⇒ tµkµ = (Wt)µ(Wk)µ = (Wt)µkµ = −1

(79)
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WEINBERG SOLUTIONS 2.6 Problem 2.6 – Massless Particles in 2+1 Dimensions

If we represent our transformed time-like vector as (Wt)µ = (β, ζ, γ), these two equations
give constraints on the transformed time-like vector, and we are left with:

(Wt)µ =
(

β,
β2

2 , 1 + β2

2

)
= (β, ζ, 1 + ζ) (80)

with ζ = β2/2.
One possible matrix that maps tµ to (Wt)µ is the boost given by

Sµ
ν (β) =

1 −β β
β 1 − ζ ζ
β −ζ 1 + ζ

 (81)

One can check that S(β) ∈ SO+(3, 1), but we will not show that here. We now have

(St)µ = (Wt)µ =⇒ (S−1Wt)µ = tµ (82)

Since tµ is left invariant by the operation S−1W , this operation must be a rotation of the
spatial coordinates. However, we can also show that

(Sk)µ = (Wk)µ =⇒ (S−1Wk)µ = kµ (83)

which means that if S−1W is a rotation, it must be a rotation about zero degrees, or the
identity, so

W µ
ν (β) = Sµ

ν (β) =

1 −β β
β 1 − ζ ζ
β −ζ 1 + ζ

 (84)

The little group is therefore one dimensional and isomorphic to the the real numbers R
under addition.

The little group element for infinitiessimal β is

W µ
ν = δµν + ωµν = δµν +

0 −β β
β 0 0
β 0 0

 (85)

where we discard ζ since it is quadratic in β. Contracting with the metric gives us

ωµν =

 0 −β β
β 0 0

−β 0 0

 (86)

The form of the little group element, U(W ), for infinitessimal β is simple. Weinberg equation
(2.4.3) was derived without any explicit reference to the number of dimensions, so we can carry
this formula as well as the later commutation relations (2.4.12-2.4.14) over wholesale to 2+1
dimensions. Our indices now range over 0 to 2, and we define the following generators:

J ≡ J12, K1 ≡ J01, K2 ≡ J02 (87)

Weinberg equation (2.4.3) then reads

U(1 + ω) = 1 − iβJ − iβK1 = 1 + iβB (88)

where B ≡ −J − K1, and the P 1, P 2 generators are excluded just because their affect on the
state Ψ is simply a phase, just like in the 3+1 case.

13



WEINBERG SOLUTIONS 2.6 Problem 2.6 – Massless Particles in 2+1 Dimensions

Since σ was just our label to denote all other degrees of freedom, σ thus labels the eigenvalues
of the generator B. We then have the following transformation:

U(W )Ψk,σ = eiβBΨk,σ = eiβσΨk,σ (89)

which implies a D-matrix of:
Dσ′σ(W ) = eiβσδσ′σ (90)

and a full transformed state as

U(Λ)Ψp,σ =
√

(Λp)0

p0 eiβ(Λ)σΨΛp,σ (91)

2.6.1 An Aside: Projective Representations of SO(2,1)

At this point however, we need to be quite careful. σ is not necessarily the helicity as we would
imagine it for 3+1 dimensions for two reasons: There has been no restriction on the values σ
could take and the generator B does not correspond solely to the 3-angular momentum. Since
we do not have experimental evidence, it’s not as easy to say σ must be a discrete value, so we
must analyze the central charges and topology of SO(2, 1).

Since the central charges for SO(3, 1) made no reference to the dimensionality of the space,
we can likewise conclude that all central charges for SO(2, 1) can be eliminated or the generators
can be redefined to include the central charges, just like for SO(3, 1).

However, the topologies are quite different. We proceed like Weinberg. Let’s encode an
arbitrary three-vector V µ as a matrix:

v =
[
V 0 + V 2 V 1

V 1 V 0 − V 2

]
(92)

Why do we do this? Well the determinant gives us the invariant length V µVµ:

det v = −(V 0)2 + (V 1)2 + (V 2)2 = V µVµ (93)

We notice also that v is symmetric. Therefore, the transformation involving real matrices λ

v → λvλT (94)

is also symmetric since
(λvλT )T = (vλT )λT = λvTλT = λvλT (95)

How does this transformation affect the determinant?

det
(
λvλT

)
= det λ det v det λT = (det λ)2 det v (96)

So, if det λ = ±1, then det v, the invariant length, is preserved. Let’s now restrict our study
to λ with det λ = ±1. We can further restrict the λ we consider because this arbitrary phase,
just like in the 3+1 case, can be chosen such that det λ = +1.

Further, we can compose two transformations and see they obey the group transformation
law:

(λλ̄)v(λλ̄)T = λ(λ̄vλ̄T )λT (97)
So, the λ form a group, SL(2, R). This group preserves the invariant length of a three-

vector, the same effect as elements of SO(2, 1). We however note that λ and −λ are different
elements of SL(2, R), but they nevertheless produce the same Lorentz transformation λvλT ,
and therefore SO(2, 1) is not the same as SL(2, R) but rather SL(2, R)/Z2.
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WEINBERG SOLUTIONS 2.6 Problem 2.6 – Massless Particles in 2+1 Dimensions

We now investigate the topology. We apply the polar decomposition theorem to an arbitrary
real matrix λ:

λ = oes (98)
where o is an orthogonal matrix and s is a symmetric matrix:

oTo = 1, s = sT (99)

From o being orthogonal, we must have det o = ±1, however, we know det λ = +1, so

det λ = (det o)(det es) = (det o)eTr s (100)

but eTr s is a positive number, so det o = +1 for det λ to be positive. But, for det λ to be +1
exactly, we also require Tr s = 0, so to summarize

det o = 1
Tr s = 0

(101)

The o therefore belong to the group SO(2), and the s are the group of symmetric traceless
matrices. In particular, the o correspond to rotations in the spatial components. First note
that V 0 = 1

2 Tr v. If s = 0, then λ leaves V 0 invariant:

V 0 = 1
2 Tr v → 1

2 Tr ovoT = 1
2TroTov = 1

2Trv = V 0 (102)

so o is just a rotation.
Our o can be written in general as:

o =
[

a b
−b a

]
(103)

subject to the constraint

det o = a2 + b2 = 1 (104)
Which means the topology of SO(2) is the same as S1, the circle.

s, our 2-by-2 symmetric, traceless matrix can in general be written as:

s =
[
c d
d −c

]
(105)

with c, d ∈ R, so the topology of this group is the same as two-dimensional flat space R2. Since
the polar decomposition theorem gurantees a unique decomposition, the group SL(2, R) is just
R2 × S1. Now, the sign change of +λ and −λ can only be caused o since es is always positive,
so the topology of SO(2, 1) is R2 × S1/Z2.

It can be shown that the topology of S1/Z2 is isomorphic to S1, and this topology is not
simply connected. The fundamental group of S1 is Z. Therefore, unlike with SO(3, 1), we
have no way to constrict the value σ takes. Recall that for SO(3, 1), we were able to say that
a rotation of 4π can be deformed to the identity, since it is composed of two rotations of 2π
which is a double loop in S3/Z2. This meant that ei4πσ = 1, which constrained σ to be integer
or half-integer. However, for S1/Z2, since the topology is isomorphic to S1, the classes of loops
are labeled by winding number. For loops of non-zero winding number, we cannot deform these
into the identity, and therefore, for non-zero β, we have no such identity of eiβσ = 1. Our σ
is unconstrained. Particles exhibiting this phenomenon have been described as “anyons,” and
have been studied in condensed matter. The moral of the story is σ can take any value.
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Returning now to the problem, we will proceed with characterizing how the states change
under P and T . The matrix P that acts on three-vectors is:

P =

−1 0 0
0 1 0
0 0 1

 (106)

A few things to note: P looks different from the 3+1D case since P must be in the

3 Chapter 3

3.1 Problem 3.1 – A Separable Interaction

In this problem, we are tasked to construct explicit expressions for the in/out states as well as
the S-matrix given the matrix elements of the interaction potential:

(Φβ, V Φα) = g uβ u∗
α (107)

where ∑
α

|uα|2 = 1 . (108)

To do this, we use the Lippman-Schwinger equations expanded in a basis of free particle states:

Ψ±
α = Φα +

∫
dβ

T ±
βαΦβ

Eα − Eβ ± iε
, T ±

βα ≡ (Φβ, V Ψ±
α ) . (109)

We can recursively expand the expression for the in/out states:

Ψ±
α = Φα +

∫
dβ

(Φβ, V Φα)Φβ

Eα − Eβ ± iε
+
∫

dβ
∫

dγ
(Φβ, V Φγ)(Φγ, V Φα)Φβ

(Eα − Eβ ± iε)(Eα − Eγ ± iε) + ... (110)

then use (107) to rewrite this as:

Ψ±
α = Φα + g

∫
dβ

uβu∗
αΦβ

Eα − Eβ ± iε
+ g2

∫
dβ
∫

dγ
uβu∗

γuγu
∗
αΦβ

(Eα − Eβ ± iε)(Eα − Eγ ± iε) + ...

= Φα + g
∫

dβ
uβu∗

αΦβ

Eα − Eβ ± iε

∞∑
n=0

(
g
∫

dγ
|uγ|2

Eα − Eγ ± iε

)n
.

(111)

The sum is now expressed as a geometric series. We can be sure that this series does indeed
converge, because (108) guarantees that |uγ|2 dies off sufficiently fast at infinity to use contour
integration and pick up poles in the energy from the denominators. We can then define this
geometric ratio as R±

α , and evaluate the series as (1 − R±
α )−1. Thus we have an explicit, non-

recursive expression for the in/out states:

Ψ±
α = Φα + g

∫
dβ

uβu∗
αΦβ

(Eα − Eβ ± iε)(1 − R±
α ) . (112)

We can even remove the resolution of identity at this point to write

Ψ±
α =

[
1 + (1 − R±

α )−1(Eα − H0 ± iε)−1V

]
Φα (113)
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WEINBERG SOLUTIONS 3.2 Problem 3.2 – A Spin-1 Resonance

We can also find an explicit expression for the S-matrix elements Sβα = (Ψ−
β , Ψ+

α ):

Sβα = (Φβ, Φα)
+ (Φβ, V (Eβ − H0 + iε)−1(1 − R+

β )−1Φα) + (Φβ, (1 − R+
α )−1(Eα − H0 + iε)−1V Φα)

+ (Φβ, V (Eβ − H0 + iε)−1(1 − R+
β )−1(1 − R+

α )−1(Eα − H0 + iε)−1V Φα) .

(114)

Since (1 − R+
α ) is a c-number, we can move it through the inner products with impunity, and

then act the H0 terms on the now adjacent eigenstates Φα/β in the second line. We can then
write the second line above as:

(Φβ, V Φα)
(

1
(1 − R+

β )(Eβ − Eα + iε) + 1
(1 − R+

α )(Eα − Eβ + iε)

)

= guβu∗
α

(
1

(1 − R+
β )(Eβ − Eα + iε) + 1

(1 − R+
α )(Eα − Eβ + iε)

)
.

(115)

For the third line of (114), we can insert a complete set of states between the two H0 terms,
which gets us

1
(1 − R+

β )(1 − R+
α )

∫
dγ

(Φβ, V Φγ)(Φγ, V Φα)
(Eβ − Eγ + iε)(Eα − Eγ + iε)

= guβu∗
α

(1 − R+
β )(1 − R+

α )

∫
dγ

g|uγ|2

(Eβ − Eγ + iε)(Eα − Eγ + iε) .

(116)

We can then write the entire S-matrix element as

Sβα = δ(β − α) + guβu∗
α

(1 − R+
β )(1 − R+

α )

 1 − R+
α

Eβ − Eα + iε
+

1 − R+
β

Eα − Eβ + iε

+
∫

dγ
g|uγ|2

(Eβ − Eγ + iε)(Eα − Eγ + iε)

 .

(117)

This can potentially be simplified by combining the first two terms in brackets, but I am weary
about the iε terms and the pole structure they represent.

3.2 Problem 3.2 – A Spin-1 Resonance

This question is a simple application of the formulae in chapter 3.7 on resonances. We start
with the equation for the cross section of a 2-body channel n going into a 2-body channel n′

written in the center-of-mass frame:

σ(n → n′; E) = π(2jR + 1)
k2(2s1 + 1)(2s2 + 1)

ΓnΓn′

(E − ER)2 + Γ2/4 (118)

Since we are looking at elastic scattering, n = n′. The cross section we are given is also at
resonance, so E = ER. Finally, at

√
s = 150 GeV, the electron and positron are ultrarelativistic,

so k = 75 GeV. Plugging in the values for the spins and the cross section σ(n → n; ER) =
10−34 cm−2 = 10−10 bn, we find:

σ(n → n; ER) = π(2jR + 1)
k2(2s1 + 1)(2s2 + 1)

Γ2
n

(E − ER)2 + Γ2/4

= 3π

k2

(
Γn
Γ

)2

=⇒ Γn/Γ = 0.0124

(119)
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We also have:
σ(n → n′; E)/σtotal(n; E) = Γn′/Γ

=⇒ σtotal(n; ER) = 8.08 nb = 8.08 × 10−33 cm−2 (120)

3.3 Problem 3.7 – In/Out States For Separable Interactions

Our task here is to find explicit solutions for the in/out states defined by the Lippman-Schwinger
equations

We are tasked with showing that the states ΦEpjσlsn defined by equation (3.7.5)

(Φp1σ1p2σ2n′ , ΦEpjσlsn) =
√

E

|p1|E1E2
δ3(p − p1 − p2)δ(E − E1 − E2)δn′,n

×
∑
m,µ

Cs1s2(s, µ; σ1σ2)Cls(j, σ; m, µ)Y m
l (p̂1) (121)

give the proper normalization in the center of mass frame (Weinberg 3.7.6):

(ΦE′p′j′σ′l′s′n′ , ΦE0jσlsn) = δ3(p′)δ(E ′ − E)δj′,jδσ′,σδl′,lδs′,sδn′,n (122)

To show the validity of Equation 122, we proceed by working with the left hand side.
Inserting a resolution of the identity in terms of states Φp1σ1p2σ2n gives

(ΦE′p′j′σ′l′s′n′ , ΦE0jσlsn) =
∫

d3p1d
3p2

∑
σ1σ2n̄

(ΦE′p′j′σ′l′s′n′ , Φp1σ1p2σ2n̄) (Φp1σ1p2σ2n̄, ΦE0jσlsn)

=
∫

d3p1d
3p2

∑
σ1σ2n̄

√
EE ′

k1E1E2
δ3(p1 + p2)δ(E − E1 − E2)δn̄,n

× δ3(p′ − p1 − p2)δ(E ′ − E1 − E2)δn̄,n′
∑
m,µ

Cs1s2(s, µ; σ1σ2)

× Cls(j, σ; m, µ)
∑
m′,µ′

Cs1s2(s′, µ′; σ1σ2)Cl′s′(j′, σ′; m′, µ′)Y m
l (p̂1)Y m′∗

l′ (p̂1)

(123)

where ki ≡ |pi| and Ei ≡
√

k2
i + M2

i .
We can rewrite the delta functions as

δ3(p1 + p2)δ(E − E1 − E2)δ3(p′ − p1 − p2)δ(E ′ − E1 − E2)
= δ3(p1 + p2)δ(E − E1 − E2)δ3(p′)δ(E ′ − E)

(124)

Let us now do the integral over p2. The only parts of Equation 123 that depend on p2 is
then ∫

d3p2
1

E2
δ3(p1 + p2)δ(E − E1 − E2)

=
∫

d3p2
1√

k2
2 + M2

2

δ3(p1 + p2)δ(E − E1 −
√

k2
2 + M2

2 )

= 1√
k2

1 + M2
2

δ(E − E1 −
√

k2
1 + M2

2 )

(125)

Next, we do the integral over the angular components of p1 by splitting d3p1 = k2
1dk1dΩ1,

where Ω1 is the solid angle of p̂1. The entire integrand now only depends on k1, except for the
spherical harmonics that depend on p̂1, i.e. Ω1.∫

dΩ1Y
m
l (Ω1)Y m′∗

l′ (Ω1) = δl,l′δm,m′ (126)
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Equation 123 now reads

δ3(p′)δ(E ′ − E)δl,l′
∫

dk1
Ek1

E1

√
k2

1 + M2
2

δ(E − E1 −
√

k2
1 + M2

2 )

∑
σ1σ2n̄,

m,µ,m′,µ′

δn̄,nδn̄,n′δm,m′Cs1s2(s, µ; σ1σ2)Cls(j, σ; m, µ)Cs1s2(s′, µ′; σ1σ2)Cl′s′(j′, σ′; m′, µ′)
(127)

The sums can be evaluated using the Clebsch-Gordon identities Weinberg gives in the
footnote on page 154. The sum over σ1, σ2 gives Kronecker deltas δs,s′δµ,µ′ . Summing over
m′, µ′, n̄ gives

δs,s′δn,n′
∑
m,µ

Cls(j, σ; m, µ)Cl′s′(j′, σ′; m, µ) = δs,s′δn,n′δj,j′δσ,σ′ (128)

For the k1 integral, one trick to solve this is to convert it into an integral over E1. From
E2

1 = k2
1 + M2

1 , we have dE1 = k1dk1/E1, so the integral becomes∫
dE1

E√
E2

1 − M2
1 + M2

2

δ(E − E1 −
√

E2
1 − M2

1 + M2
2 ) (129)

Since the delta function is 0 when E = E1 +
√

E2
1 − M2

1 + M2
2 , we can rewrite the integral

as ∫
dE1

E1 +
√

E2
1 − M2

1 + M2
2√

E2
1 − M2

1 + M2
2

δ(E − E1 −
√

E2
1 − M2

1 + M2
2 ) (130)

Let’s remind ourselves of the identiy for delta function composition,

δ(g(x)) =
∑
x0

δ(x − x0)
|g′(x0)|

(131)

where x0 are the zeroes of g(x).
The only value of E1 that makes the argument of the delta function zero is

E0 = E2 + M2
1 − M2

2
2E

(132)

Therefore |g′(E0)| is

|g(E0)| =
E0 +

√
E2

0 − M2
1 + M2

2√
E2

0 − M2
1 + M2

2

(133)

Finally, the full E1 integral evaluates to 1:

∫
dE1δ(E1 − E0)

E1 +
√

E2
1 − M2

1 + M2
2√

E2
1 − M2

1 + M2
2

√
E2

0 − M2
1 + M2

2

E0 +
√

E2
0 − M2

1 + M2
2

= 1 (134)

Equation 127 is therefore reduced to the right hand side of Equation 122, so have we proved

(ΦE′p′j′σ′l′s′n′ , ΦE0jσlsn) = δ3(p′)δ(E ′ − E)δj′,jδσ′,σδl′,lδs′,sδn′,n (135)
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4 Chapter 4

4.1 Problem 4.1 – Generating Functionals

Important equations for the question

F [v] ≡ 1 +
∞∑
N=1

∞∑
M=1

1
N !M !

∫
v∗(q′

1)...v∗(q′
N)v(q1)...v(qM)

×Sq′
1...q

′
N ,q1...qM

dq′
1...dq′

Ndq1...dqM

(136)

FC [v] ≡
∞∑
N=1

∞∑
M=1

1
N !M !

∫
v∗(q′

1)...v∗(q′
N)v(q1)...v(qM)

×SC
q′

1...q
′
N ,q1...qM

dq′
1...dq′

Ndq1...dqM

(137)

Sβα =
∑
PART

(±)SC
β1α1SC

β2α2 ... (138)

Because we only need to consider the bosonic case, we can discard the ± from now on. In order
to make the notation nicer, I’m going to introduce the following notation:

α = q1...qM (139)
β = q′

1..q
′
N (140)

v∗(q′
1)...v∗(q′

N) =
N∏
β

v∗(q′
β) (141)

v(q1)...v(qM) =
N∏
α

v(qα) (142)

CNM =
∫ N∏

β

v∗(qβ)
M∏
α

v(qα)SC
αβdβdα (143)

FC [v] =
∞∑
N=1

∞∑
M=1

CNM

N !M ! (144)

F [v] = 1 +
∞∑
N=1

∞∑
M=1

1
N !M !

∫ N∏
β

v∗(q′
β)

N∏
β

v∗(q′
β)Sβαdβdα (145)

We can now replace the S matrix in the expression for F [v] with the definition of the connected
S matrices

F [v] = 1 +
∞∑
N=1

∞∑
M=1

1
N !M !

∫ N∏
β

v∗(q′
β)

M∏
α

v(qα)

×
( ∑
PART

SC
β1α1SC

β2α2 ...

)
dβdα

(146)

factorizing the equation yields:

F [v] = 1 +
∞∑
N=1

∞∑
M=1

1
N !M !

∑
PART

×

∫ |β1|∏
β1

v∗(q′
β1)

|α1|∏
α1

v(qα1)SC
β1α1dα1dβ1


×

∫ |β2|∏
β2

v∗(q′
β2)

|α2|∏
α2

v(qα2)SC
β2α2dα2dβ2

 ...

(147)
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This can be written much more compressed using the notation introduced earlier because the
qs are just integration variables:

F [v] = 1 +
∞∑
N=1

∞∑
M=1

1
N !M !

∑
PART

C|β1||α1|C|β2||α2|... (148)

Keep in mind ∑
i

|βi| = N∑
i

|αi| = M

From Eq. 148, we can pull out the first term of the sum over partitions to get an expression
for F [v] in terms of FC [v]

F [v] = 1 +
∞∑
N=1

∞∑
M=1

1
N !M !

(
CNM +

∑
PART

′
C|β1||α1|C|β2||α2|...

)
(149)

F [v] = 1 + FC [v] +
∞∑
N=1

∞∑
M=1

1
N !M !

∑
PART

′
C|β1||α1|C|β2||α2|... (150)

Where ∑′ is the sum over products of two or more C.
To get a more general relationship, let us return to the expression including the sum over

all partitions:

F [v] = 1 +
∞∑
N=1

∞∑
M=1

1
N !M !

∑
PART

C|β1||α1|C|β2||α2|... (151)

Because the summand does not depend on the the specific partitions, just the lengths of the
partitions, I can sum over sets of multiplicities of permutations {ma,b}, where a corresponds to
the number of outgoing particles and b corresponds to the number of incoming particles. Thus,
when I sum over the number of incoming and outgoing particles∑

a,b

a · ma,b = N

∑
a,b

b · ma,b = M

Thus, I can convert the double sum over all total number of outgoing and incoming particles
to a sum over all sets of multiplicities of particles grouped together into all permutations.
Now the question is the combinatorial factor for how many ways the particles can be grouped
together. There are N !M ! different ways of listing the particles, this determines which particles
get sorted into what connected piece. Inside each connected piece, the order does not matter,
so you must divide by a!b! to remove duplicates. For a certain multiplicity of that cluster
appearing, you must divide by this factor each time, so you get a factor of (a!b!)ma,b. Also, each
cluster is indistinguishable from each other cluster with the same length, so you must divide by
a factor of ma,b!. Each set {ma,b} is composed of multiple groupings where these factors must
be divided out, so you must divide by the product of ma,b!(a!b!)ma,b over all a and b. Thus the
combinatorial factor becomes:

N !M !∏
a,b ma,b(a!b!)ma,b
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Now, the sums over total number of incoming and outgoing particles can be replaced by a single
sum over sets of multiplicities of groupings of |βi| outgoing particles and |αi| incoming particles.

F [v] = 1 + 1
N !M !∑

{m|βi|,|αi|}

M !N !∏
|βi|,|αi| m|βi|,|αi|!(|βi|!|αi|!)m|βi|,|αi|

∏
|βi|,|αi|

C
m|βi|,|αi|
|βi||αi|

(152)

Simplifying

F [v] =
∏

|βi|,|αi|

∑
m|βi|,|αi|=0

1
m|βi|,|αi|!(|βi|!|αi|!)m|βi|,|αi|

C
m|βi|,|αi|
|βi||αi| (153)

F [v] =
∏

|βi|,|αi|
eC|βi||αi|/|βi|!|αi|! (154)

F [v] = exp
 ∞∑
βi=0

∞∑
αi=0

C|βi||αi|

|βi|!|αi|!

 (155)

Finally,

F [v] = eF
C [v] (156)

4.2 Problem 4.2 – Spin-0 Particle Interactions

We wish to calculate the S-matrix element Sβα and differential cross section for scattering of
spinless bosons with mass M > 0 in the center-of-mass frame to order g given an interaction:

V = g
∫

d3p1 d3p2 d3p3 d3p4 δ3(p1 + p2 − p3 − p4)a†(p1)a†(p2)a(p3)a(p4) (157)

We start with the definition of the S-matrix in time-dependent pertubation theory to first
order in V :

S = 1 − i
∫ ∞

−∞
dt V (t) = 1 − i

∫ ∞

−∞
dt eiH0tV e−iH0t (158)

Taking the inner product with states Φβ and Φα, we have:

Sβα = δ(β − α) − i
∫ ∞

−∞
dt ei(Eβ−Eα)t(Φβ, V Φα) (159)

We now wish to calculate

(Φβ, V Φα) = g
∫

d3p1 d3p2 d3p3 d3p4 δ3(p1 + p2 − p3 − p4)(Φβ, a†(p1)a†(p2)a(p3)a(p4)Φα)
(160)

which lets us narrow our focus to just calculating

(Φβ, a†(p1)a†(p2)a(p3)a(p4)Φα) = (a(p2)a(p1)Φβ, a(p3)a(p4)Φα) (161)

Let’s now formulate conditions on when a(p3)a(p4)Φα = 0 and what happens when both
the bra and ket are non-zero in the inner product. In general, we can describe our state Φα,
which let’s say consists of Nα bosons, as

Φα = a†(k1) . . . a†(kNα)Φ0 (162)

For generality, let’s suppose we have a product of M annihilation operators acting on this
state. This would look like

a(p1) . . . a(pM)a†(k1) . . . a†(kNα)Φ0 (163)
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If we pass one annihilation operator through all Nα creation operators, we are left with a
sum where each term is a product of a single delta function and Nα − 1 creation operators
acting on the vacuum Φ0. That is, unless Nα = 0 where we would just get 0. We can repeat
this process for M annihilation operators, where we would get a sum of terms where each has
M deltas and Nα − M creation operators acting on Φ0, unless M > Nα, where we would just
get 0. Since we are operating on Φα with M = 2 annihilation operators, the number of particles
in Φα must be ≥ 2 in order to get a non-zero contribution to first-order in pertubation theory.
Similarly, we find Nβ ≥ 2.

Now, after we pass all the annihilation operators through Equation 163, and assuming
Nα ≥ M , each of the resulting terms can be expressed as M delta functions acting on a state
with Nα − M particles. This is due to reapplying the creation operators on the vacuum. This
implies that when taking inner products of two such states given by Equation 163, we require
Nβ = Nα ≡ N .

Finally, let’s investigate how this interaction look diagramatically. We will have one vertex
because we are at first order in pertubation theory. Our interaction has two annihilation
operators, so we get two lines going up and meeting at the vertex when we move these operators
through the Φα creation operators. We also have two creation operators in V , so we get two
lines exiting the vertex when the Φβ adjoint annihilation operators move past the V creation
operators. We are left with N − 2 annihilation operators from Φβ adjoint and N − 2 creation
operators from Φα, so we get N − 2 lines going straight up through the diagram as we pass the
annihilation operators through the creation operators. This looks like something like:

(Φβ, V Φα) = . . . + . . . + . . . + . . . (164)

where the vertical lines occur N−2 times. This is equivalent to the Equation (4.4.5) in Weinberg
to first order (minus the time dependence):

(Φβ, V Φα) =
∑

clusterings

∏
j

(Φβj
, VjΦαj

)C (165)

with Vj = 1 for clusters that do not involve a vertex. For clusters that do not involve a vertex,
we are simply left with δ(βj − αj), so we only need to concern ourselves with the diagram that
contains a vertex, i.e. the one that corresponds to Nα = Nβ = 2 scattering. Returning to
Equation 161, we want to calculate:

(a(p2)a(p1)Φβ, a(p3)a(p4)Φα) = (a(p2)a(p1)a†(k′
1)a†(k′

2)Φ0, a(p3)a(p4)a†(k1)a†(k2)Φ0)
(166)

Focusing on one vector in the inner product:

a(p3)a(p4)a†(k1)a†(k2)Φ0 = a(p3)a†(k1)a(p4)a†(k2)Φ0 + δ3(p4 − k1)a(p3)a†(k2)Φ0

= a(p3)a†(k1)a(p4)a†(k2)Φ0 + δ3(p4 − k1)δ3(p3 − k2)Φ0

= δ3(p4 − k2)δ3(p3 − k1)Φ0 + δ3(p4 − k1)δ3(p3 − k2)Φ0

=
[
δ3(p3 − k1)δ3(p4 − k2) + δ3(p3 − k2)δ3(p4 − k1)

]
Φ0

(167)

Similarly, we have

a(p2)a(p1)a†(k′
1)a†(k′

2)Φ0 =
[
δ3(p1 − k′

1)δ3(p2 − k′
2) + δ3(p1 − k′

2)δ3(p2 − k′
1)
]

Φ0 (168)

Equation 166 reduces to:[
δ3(p1 − k′

1)δ3(p2 − k′
2) + δ3(p1 − k′

2)δ3(p2 − k′
1)
] [

δ3(p3 − k1)δ3(p4 − k2) + δ3(p3 − k2)δ3(p4 − k1)
]

(169)
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Therefore, the matrix element of the time-independent interaction potential for N = 2 is

(Φβ, V Φα) = 4g δ3(k′
1 + k′

2 − k1 − k2) (170)

The connected S-matrix element for N = 2 is

Sβα = δ(β − α) − 4ig δ3(k′
1 + k′

2 − k1 − k2)
∫ ∞

−∞
dt ei(E

′
1+E′

2−E1−E2)t

Sβα = δ(β − α)(1 − 8iπg)

=⇒ SC
βα = −2iπδ(β − α)(4g)

(171)

where we used Weinberg’s result for two particle states SC
βα = (S − 1)βα.

The full S-matrix element is then:

Sβα = δ(β − α)
1 − 8iπg

∑
clusterings

 (172)

The sum over clusters is simply the number of ways of putting N particles into unordered
groups with one group of two particles and N − 2 groups of one particle each. This is the same
as the number of ways of putting N particles into an unordered group of two, which is just N
choose 2, so

Sβα = δ(β − α) [1 − 4iπgN(N − 1)] (173)

When calculating the cross section, we must restrict ourselves to only states Φα and Φβ that
have no subset of particles whose momenta are unchanged during the interaction. Therefore, we
should only consider the connected S-matrix consisting of two particles. The delta function-free
matrix element is

Mβα = 4g (174)

which, using Weinberg Equation (3.4.30), leads to the cross section

dσ(α → β)
dΩ = (2π)4k′E ′

1E
′
2E1E2

E2k
|4g|2

dσ(α → β)
dΩ = g2 (4π)4k′E ′

1E
′
2E1E2

E2k

(175)
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