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1 Introduction

This is a companion document to the Weinberg solutions set that myself and a few other Berke-
ley students are writing. My hope with writing chapter summaries is to help my understanding
as I read, but also to provide a concise reference to how Weinberg arrives at certain conclusions.
Special attention will be paid to the logical structure of The Quantum Theory of Fields, as that
is what I think sets this textbook apart from the many others.

I will follow all the same conventions as Weinberg does. Most importantly, a generic four
vector is written as Aµ = (A1, A2, A3, A0), and the metric ηµν = diag(1, 1, 1, −1). I will also
use natural units, unless explicitly stated otherwise.

2 Chapter 2 - Relativistic Quantum Mechanics

2.1 Quantum Mechanics and Special Relativity

Quantum field theory takes as axiomatic two theories of the early 1900s: quantum mechanics
and special relativity. This is a good assumption, since we have great experimental evidence
in support of these theories. The postulates of quantum mechanics, as presented by Weinberg,
are:

(i) Physical states are represented by a ray R in a complex vector space E called a Hilbert
space. R is the set of all normalized vectors Ψ that differ only by a phase.
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WEINBERG SOLUTIONS 2.2 The Poincare Group, its Algebra, and its Representations

(ii) Observables are represented by Hermitian operators A = A† on E .

(iii) The probability of finding a state R in a (potentially) new state R′ is

P (R → R′) = |(Ψ, Ψ′)|2 (1)

where Ψ ∈ R and Ψ′ ∈ R′.
The classic statement of the postulates of special relativity is:

(i) Physical laws are the same in all inertial reference frames.

(ii) The speed of light in vacuum is 1 in all inertial reference frames.
These two postulates can be casted mathematically into the statement:

(i) The equations of the laws of physics are Poincare covariant. That is, any physical law
can be built out of scalars, vectors, tensors, etc. that transform under representations of
the Poincare group.

The importance of special relativity is that its postulates impose a symmetry on our Hilbert
space which constrains the form our states and operators take. The Quantum Theory of Fields
really just follows the logical conclusion of what happens when we limit the form quantum
mechanics can take.

2.2 The Poincare Group, its Algebra, and its Representations

From Wigner’s theorem, any symmetry can be represented by a linear, unitary operator or
antilinear, antiunitary operator. Symmetries dependent on a continuous parameter must be
represented only by a linear, unitary operator, since they can be continuously changed into the
identity operator which is linear and unitary.

Symmetry transformations form a group, but since the transformations map rays into other
rays, our group multiplication law for the representations has the form:

U(T2)U(T1) = eiϕ(T2,T1)U(T2T1) (2)

for T1, T2 ∈ G, where G is some symmetry group. This inclusion of a phase has very important
consequences that we will see later in terms of the allowed angular momenta of particles.
Importantly, it is a consequence of the postulates of quantum mechanics dictating our states
are represented by rays.

Connected Lie groups are groups defined by real, continuous parameters with all elements
connected to the identity by a path within the group. The group multiplication law takes the
form:

U(T (θ̄))U(T (θ)) = exp
(
iϕ(T (θ̄), T (θ))

)
U(T (f(θ̄, θ))) (3)

When we go to infinitessimal parameters θ, θ̄, we find the following relation:

[tb, tc] = iCa
bc ta + iCbc1 (4)

where ta are our generators, Ca
bc are our structure constants defined as

fa(θ̄, θ) = θa + θ̄a + fa
bc θ̄bθc + ..., Ca

bc ≡ −fa
bc + fa

cb , (5)

and Cbc are our central charges defined as

ϕ(T (θ̄), T (θ)) = fab θ̄aθb + ..., Cbc = −fbc + fcb (6)

The commutation relations given by Equation 4 are called a Lie algebra. One could ask the
question: are the phases ϕ in our representations fundamental to our group or could they be
set to 0 if we were to smartly choose a different representation? A special theorem exists that
says we can choose ϕ = 0 if both of the following are met:
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(a) The generators of the group can be redefined as to eliminate the central charges from the
Lie algebra. This only happens if we can write Cab = Ce

abϕe for real constants ϕe. The
redefinition is then given by t̃a ≡ ta + ϕa.

(b) The group is simply connected, so that any closed path within the group can be contin-
uously deformed into a point.

At this stage, we now want to analyze the Lie algebra, central charges, and topology of
the Poincare group. Starting with the Poincare algebra, we find (assuming no central charges
exist):

i[Jµν , Jρσ] = ηνρJµσ − ηµρJνσ − ησµJρν + ησνJρµ

i[P µ, Jρσ] = ηµρP σ − ηµσP ρ

[P µ, P ρ] = 0
(7)

Weinberg shows in Chapter 2.7 that when we add central charges into the Poincare algebra,
they can be eliminated by redefining the generators. However, the Galilean algebra does admit
a central charge, namely the mass M . This is shown in the solutions to Problem 2.3.

The topology of the Poincare group is not simply connected, however. Weinberg shows the
topology of the Poincare group is R4×R3×S3/Z2. The fundamental group is Z2, corresponding
to the two classes of loops through the space. The first class is loops that that go an odd number
of times over the same path from an element back to itself; the second class goes an even number
of times. This is because a double loop over the same path can be continually contracted to a
point. Therefore, we have the identity:

[U(Λ)U(Λ̄)U−1(ΛΛ̄)]2 = 1 (8)

Therefore, the projective phase for the Poincare group is

eiϕ = ±1 (9)

We will return to this phase when we talk about particles.

2.3 Particles

3 Chapter 3 - Scattering Theory
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