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Chapter 2

Problem 2.1

We will make use of equation (2.5.23) for how a massive particle state U, , transforms under a
homogenous Lorentz transformation U(A):
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The most difficult part of this problem is finding what the little group transformation W is.
W is given by equation (2.5.10):

W(A,p) = L™ (Ap)AL(p) (2)

Before we compute W, we can note two properties it must have. Since the little group for
massive particles is SO(3), we know that W, a representation of the little group, must be a
rotation matrix. The other property is the rotation matrix must be a rotation about the z-axis.
This is because p is in the y-direction, and therefore the boost L(p) preserves four-vectors’ x-
components. Similarly, the boost A is in the z-direction and preserves z-components. The boost
L~Y(Ap) boosts in the y- and z-directions, and must also preserve x-components. So the rotation
W must leave z-components invariant, which means the rotation must be about the x-axis.

The energy of the W-boson in observer O’s frame is F = y/p? + m?, and therefore the four-

momentum is

We will use equation (2.5.24) to calcualte L(p) and L~ (Ap). The Lorentz factor to go from k*
to ptis v = %, s0 /7* —1 = £ The unit three-momenta are p, = p3 = 0 and p, = 1. The boost
L(p) is then
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Since @’ is moving at speed v in the +z-direction relative to O, the boost that takes us from
O to O is
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where v = ———.. Note that this v is not referring to the gamma used to previously find L(p), but
V1—v?

rather refers to the boost from O to O'.
The four-momenta to O is
(Ap)# = (Oapa _U7E7 7E> (6>
The boost L™ (Ap) is the inverse of L(Ap), and therefore boosts a particle with four-momentum
(Ap)* back into its rest frame. This is equivalent to boosting the particle in the opposite direction it
was originally boosted in, so L' (Ap) = L(—Ap). The Lorentz factor for this boost is v = % = %
The expression for Lj can be simplified when solving for these components:
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The boost L™!(Ap) then reads
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Plugging all of this into Equation 2 gives the full little group element
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We should note that W (A, p) has the predicted form of a rotation matrix about the z-axis,
where we identify cos(f) = % and sin(0) = 5.

Since the W-boson is a spin-1 particle, the representation D((TJ,:I) of W(A, p) is simply a rotation
matrix for 3D vectors, so we can immediately identify
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with subsequent rows and columns numbered -1, 0, and 1.
We are now able to write the full transformed state
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We can further check that when v — 0, we get that U(A)¥, ., = ¥, 11, as expected.

Problem 2.3
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This has been covered in Hagimoto already.
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